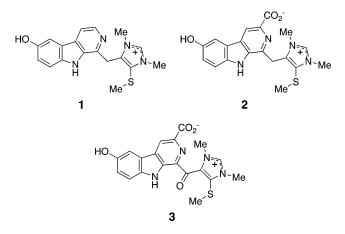
Gesashidine A, a β -Carboline Alkaloid with an Imidazole Ring from a Thorectidae Sponge

Yoshiro Iinuma,[†] Shingo Kozawa,[†] Haruaki Ishiyama,[†] Masashi Tsuda,[†] Eri Fukushi,[§] Jun Kawabata,[§] Jane Fromont,[‡] and Jun'ichi Kobayashi^{*,†}

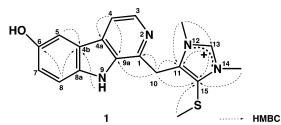

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan, and Western Australian Museum, Perth, WA 6000, Australia

Received February 28, 2005

A new β -carboline alkaloid with an imidazole ring, gesashidine A (1), has been isolated from an Okinawan marine sponge of the family Thorectidae (SS-1035), and the structure was elucidated from the spectroscopic data.

 β -Carboline alkaloids are known to be one of the most common metabolites contained in marine sponges.¹ During our search for new metabolites from marine organisms,² we previously isolated several β -carboline alkaloids with unique polycyclic ring systems from *Amphimedon* sponges.^{3,4} More recently, we have isolated a new β -carboline alkaloid with an imidazole ring, gesashidine A (1), from an Okinawan marine sponge of the family Thorectidae (SS-1035). Here we describe the isolation and structure elucidation of **1**.

The sponge of the family Thorectidae (SS-1035) collected off Gesashi, Okinawa, was extracted with MeOH. The MeOH extract was partitioned between EtOAc and H₂O, and subsequently the aqueous layer was extracted with *n*-BuOH. *n*-BuOH-soluble materials of the extract were subjected to gel filtration on Sephadex LH-20 and C₁₈ column chromatographies followed by C₁₈ HPLC to yield gesashidine A (1, 0.0006%, wet weight) together with known related alkaloids, dragmacidonamines A (2) and B (3).⁵ The molecular formula, C₁₈H₁₉N₄OS, of 1 was estab-



lished by HRESIMS $[m/z 339.1260 \text{ (M)}^+, \Delta -1.9 \text{ mmu}]$. IR absorptions indicated the existence of OH and/or NH (3420 cm⁻¹) and amide carbonyl (1680 cm⁻¹) groups. The ¹H and ¹³C NMR (Table 1) spectra of 1 were similar to those of hyrtiomanzamine,⁶ previously isolated from the sponge *Hyrtios erecta*, except for the resonance at C-10 in 1. The molecular weight of 1 was smaller than that of

Table 1. ¹H and ¹³C NMR Data of Gesashidine A (1) in DMSO- d_6

position	$^{1}\mathrm{H}^{a}$	$^{13}\mathrm{C}^a$	H coupled with C^b
1		137.4	H-10
3	8.80 (s)	134.5	
4	8.80 (s)	115.1	
4a		129.6	H-4
4b		121.2	H-5, H-8, N-H
5	7.62 (s)	106.0	H-7
6		151.8	H-8
7	7.21 (d, 7.6)	120.4	
8	7.56 (d, 7.6)	113.2	
8a		133.5	
9a		135.7	H-4, H-10
10	4.86 (s)	26.5	
11		136.1	H-10, 12N-Me, H-13
13	9.33 (s)	138.6	12N-Me
15		125.9	H-10, H-13, 14N-Me, S-Me
S-Me	2.04(s)	18.6	
12N-Me	3.84(s)	34.6	
14N-Me	3.82(s)	33.7	
OH			
NH	12.19(s)		

^{*a*} δ in ppm. ^{*b*} HMBC correlations.

Figure 1. Selected HMBC correlations for gesashidine A (1).

hyrtiomanzamine by 14 mass units, indicating that a ketone group at C-10 in hyrtiomanzamine was replaced by a methylene in **1**. HMBC correlations (Figure 1) of H-4 to C-4a (δ 129.6) and C-9a (δ 135.7), H-5 to C-4b (δ 121.2), H-8 to C-4a and C-6 (δ 151.8), and NH to C-4b indicated the presence of a β -carboline moiety (C-1–C-4, C-4a–C-4b, C-5–C-8, C-8a–N-9, and N-9–C-9a). The presence of an imidazolium unit (C-11–C-15) was deduced from HMBC correlations of 12-*N*-Me to C-11 (δ 136.1) and C-13 (δ 138.6), 14-*N*-Me to C-15 (δ 125.9), S-Me to C-15, and H-13 to C-11 and C-15. HMBC correlations of H-10 to C-1 (δ 137.4), C-9a, C-11, and C-15 suggested that the imidazo-lium unit was attached to C-1. Thus, the structure of gesashidine A was assigned as **1**.

Gesashidine A (1) showed antibacterial activity against *Micrococcus luteus* (MIC, 16.6 μ g/mL), while dragmaci-

10.1021/np050070p CCC: \$30.25 © 2005 American Chemical Society and American Society of Pharmacognosy Published on Web 06/28/2005

^{*} To whom correspondence should be addressed. Tel: (011)-706-4985. Fax: (011)-706-4989. E-mail: jkobay@pharm.hokudai.ac.jp.

[†] Graduate School of Pharmaceutical Sciences, Hokkaido University.

[§] Graduate School of Agriculture, Hokkaido University.

^{*} Western Australian Museum

donamines A (2) and B (3) did not exhibit such antibacterial activity. Gesashidine A (1) did not show cytotoxicity (IC₅₀ > 10 μ g/mL) against murine lymphoma L1210 and human epidermoid carcinoma KB cells in vitro

Experimental Section

General Experimental Procedures. IR and UV spectra were recorded on a JASCO FT/IR-5300 and a Shimadzu UV-1600PC spectropolarimeter. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-600 spectrometer using 2.5 mm micro cells for DMSO (Shigemi Co., Ltd). The 2.49 and 39.5 ppm resonances of residual DMSO- d_6 were used as internal references for ¹H and ¹³C NMR spectra, respectively. ESI mass spectra were obtained on a JEOL JMS-SX102A spectrometer.

Sponge Description. The sponge (SS-1035, family Thorectidae, order Dictyoceratida)⁷ was collected off Gesashi, Okinawa, and kept frozen until used. The voucher specimen (SS-1035) was deposited at Graduate School of Pharmaceutical Sciences, Hokkaido University.

Extraction and Isolation. The sponge (0.5 kg, wet weight) was extracted with MeOH (0.5 L × 3), and the extract (19.1 g) was partitioned between EtOAc (200 mL × 3) and H₂O (200 mL). Subsequently, the aqueous layer was extracted with *n*-BuOH (200 mL × 3). The *n*-BuOH-soluble materials (2.1 g) were subjected to gel filtration on Sephadex LH-20 (CHCl₃/MeOH, 1:1) to give an alkaloid-containing fraction, which was separated by C₁₈ column chromatography (MeOH/H₂O/TFA, 40:60:1) and then Cl₁₈ HPLC (Hydrosphere C18, YMC Co., Ltd., 10 × 250 mm; eluent, MeOH/H2O/TFA, 40:60:0.1; flow rate, 1.5 mL/min; UV detection at 220 nm) to afford gesashidine A

(1, 2.9 mg, 0.0006%, wet weight, $t_{\rm R}$ 12.8 min) and dragmacidonamines A (2, 23.1 mg) and B (3, 9.9 mg).

Gesashidine A (1): yellow amorphous solid; UV (MeOH) λ_{max} 212 (ϵ 25 000), 246 (7300), 289 (4400), 297 (5600), and 364 (1400) nm; IR (film) ν_{max} 3420 and 1680 cm⁻¹; ¹H and ¹³C NMR (see Table 1); ESIMS (pos.) m/z 339 [M⁺]; HRESIMS m/z 339.1260 [M⁺] (calcd for C₁₈H₁₉N₄OS, 339.1279).

Acknowledgment. We thank Z. Nagahama and S. Furugen for their help with collection of the sponge. This work was partly supported by grants from the Akiyama Foundation and Takeda Science Foundation, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and Notes

- Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2004, 21, 1–49.
 Endo, T.; Masashi, T.; Okada, T.; Mitsuhashi, S.; Shima, H.; Kikuchi,
- (2) Endo, T.; Masashi, T.; Okada, T.; Mitsuhashi, S.; Shima, H.; Kikuchi, K.; Mikami, Y.; Fromont, J.; Kobayashi, J. J. Nat. Prod. 2004, 67, 1262–1267.
- (3) Tsuda, M.; Inaba, K.; Kawasaki, N.; Honma, K.; Kobayashi, J. *Tetrahedron* **1996**, *52*, 2319–2324.
 (4) Tsuda, M.; Watanabe, D.; Kobayashi, J. *Tetrahedron Lett.* **1998**, *39*,
- (4) Isuda, M.; Watanabe, D.; Kobayashi, J. *Tetranearon Lett.* 1996, 39, 1207–1210.
 (5) Pedpradab, S.; Edrada, R.; Ebel, R.; Wray, V.; Proksch, P. J. Nat.
- Prod. 2004, 67, 2113–2116. (a) Bourset M. J. Martin, M. T. Guyat, M. Tatrahadron
- (6) Bourguet-Kondraeki, M. L.; Martin, M. T.; Guyot, M. Tetrahedron Lett. 1996, 37, 3457–3460.
- (7) Due to problems with preservation, this sponge was difficult to determine to the level of genus, but appears to have affinities to the genus Fasciospongia.

NP050070P